加入收藏 | 设为首页 | 会员中心 | 我要投稿 | RSS
您当前的位置:首页 > 试题 > 数学试题 > 高二上数学试题
文件名称: 人教A版高二数学(第三册)第七章随机变量及其分布达标检测试题
下载地址: [ 下载地址1 ]
文件大小: 242.60 KB         整理时间:2021-05-06
文件简介:
人教A版第三册高二数学第七章随机变量及其分布达标检测试题
注意事项:
1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知盒子里有10个球(除颜色外其他属性都相同),其中4个红球,6个白球.甲、乙两人依次不放回地摸取1个球,在甲摸到红球的情况下,乙摸到红球的概率为( )
A. B. C. D.
2.ξ,η为随机变量,且,若,,则a,b可能的值为( )
A., B., C., D.,
3.已知甲盒中仅有1个球且为红球,乙盒中有个红球和个篮球且
,从乙盒中随机抽取个球放入甲盒中,放入个球后,甲盒中含有红球的个数记为,则下列结论错误的是( )
A. B.
C. D.
4.已知,且,则( )
A. B. C. D.
5.中长跑是一项对学生身体锻炼价值较高的运动项目.在某校的一次中长跑比赛中,全体参赛学生的成绩近似地服从正态分布,已知成绩在90分以上(含90分)的学生有32名.则参赛的学生总数约为( ).(参考数据:,,)
A.208 B.206 C.204 D.202
6.李克强总理提出,要在960万平方公里土地上掀起“大众创业”、“草根创业”的新浪潮,形成“万众创新”、“人人创新”的新势态.为响应国家鼓励青年创业的号召,小王开了两家店铺,每个店铺招收了两名员工,若某节假日每位员工的休假概率均为,且是否休假互不影响,若一家店铺的员工全部休假,而另一家无人休假,则调剂1人到该店铺,使得该店铺能够正常营业,否则该店就停业.则两家店铺该节假日能正常开业的概率为( )
A. B. C. D.
7.设p,,随机变量ξ的分布列是:
0 1 2
p
随机变量η的分布列是:
0 1 2
q
则( )
A.
B.
C.
D.与大小关系不定
8.2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要秒,而目前世界最快的超级计算机要用亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )

A. B. C. D.

二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.
9.“杂交水稻之父”袁隆平致力于杂交水稻技术的研究、应用与推广,发明“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出杰出贡献.某水稻种植研究所调查某地水稻的株高,得出株高(单位:)服从正态分布,其密度函数为,则下列说法正确的是( )
A.该地水稻的平均株高为
B.该地水稻株高的方差为10
C.该地水稻株高在以上的数量和株高在以下的数量一样多
D.随机测量一株水稻,其株高在和在(单位:)的概率一样大
10.有3台车床加工同一型号的零件.第1台加工的次品率为6%,第2,3台加工的次品率均为5%,加工出来的零件混放在一起.已知第1,2,3台车床的零件数分别占总数的25%,30%,45%,则下列选项正确的有( )
A.任取一个零件是第1台生产出来的次品概率为
B.任取一个零件是次品的概率为
C.如果取到的零件是次品,且是第2台车床加工的概率为
D.如果取到的零件是次品,且是第3台车床加工的概率为
11.为弘扬我国古代“六艺”文化,某研学旅行夏令营主办单位计划在暑假开设“礼、乐、射、御、书、数”六门体验课程,若甲乙丙三名同学各只能体验其中一门课程.则( )
A.甲乙丙三人选择课程方案有种方法
B.恰有三门课程没有被三名同学选中的概率为
C.已知甲不选择课程“御”的条件下,乙丙也不选择“御”的概率为
D.设三名同学选择课程“礼”的人数为,则
12.已知,且,,则下列说法正确的有( )
A., B.,
C. D.

三、填空题:本大题共4小题,每小题5分.
13.已知随机变量,则___________.
14.已知随机变量服从正态分布,且,则
__________.
15.在“学习强国”APP中,“争上游”的答题规则为:首局胜利得3分,第二局胜利得2分,失败均得1分.如果甲每局胜利的概率为,且答题相互独立,那么甲作答两局的得分期望为______.
16.某合资企业招聘大学生时加试英语听力,待测试的小组中有男、女生共10人(其中女生人数多于男生人数),若从中随机选2人,其中恰为一男一女的概率为.求该小组中女生的人数为______;若该小组中每个女生通过测试的概率均为,每个男生通过测试的概率均为.现对该小组中男生甲、男生乙和女生丙3人进行测试.记这3人中通过测试的人数为随机变量,则数学期望为______.

四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤.
17.(10分)某公司招聘员工,分初试和面试两个阶段,初试通过方可进入面试.受新冠疫情影响,初试采取线上考核的形式,共考核、、三项技能,其中必须过关,、至少有一项过关才能进入面试.现有甲、乙、丙三位应聘者报名并参加初试,三人能否通过初试互不影响,每个人三项考核的过关率均相同,各项技能过关率如下表,且每一项考核能否过关相互独立.
考核技能
过关率
(1)求甲应聘者能进入面试的概率;
(2)用表示三位应聘者中能进面试的人数,求的分布列及期望.


18.(12分)一黑色袋里装有除颜色不同外其余均相同的8个小球,其中白色球与黄色球各3个,红色球与绿色球各1个.现甲、乙两人进行摸球得分比赛,摸到白球每个记1分、黄球每个记2分、红球每个记3分、绿球每个记4分,以得分高获胜.比赛规则如下:①只能一个人摸球;②摸出的球不放回;③摸球的人先从袋中摸出1球;若摸出的是绿色球,则再从袋子里摸出2个球;若摸出的不是绿色球,则再从袋子里摸出3个球,他的得分为两次摸出的球的记分之和;④剩下的球归对方,得分为剩下的球的记分之和.
(1)若甲第一次摸出了绿色球,求甲的得分不低于乙的得分的概率;
(2)如果乙先摸出了红色球,求乙得分的分布列和数学期望.


19.(12分)某超市计划按月订购一种预防感冒饮品,每天进货量相同,进货成本每瓶5元,售价每瓶8元,未售出的饮品降价处理,以每瓶3元的价格当天全部处理完.根据一段时间以来的销售经验,每天需求量与当天最高气温(单位:)有关.如果最高气温不低于30,需求量为500瓶;如果最高气温位于区间,需求量为300瓶;如果最高气温低于25,需求量为200瓶.为了确定七月份的订购计划,统计了前三年七月份各天的最高气温数据,得下面的频数分布表:
最高气温
天数 27 36 20 7
以最高气温位于各区间的频率代替最高气温位于该区间的概率.
(1)求七月份这种饮品一天的需求量x(单位:瓶)的分布列;
(2)若七月份一天销售这种饮品的利润的数学期望值不低于700元,则该月份一天的进货量n(单位:瓶)应满足什么条件?
20.(12分)已知某射手射中固定靶的概率为,射中移动靶的概率为,每次射中固定靶、移动靶分别得1分、2分,脱靶均得0分,每次射击的结果相互独立,该射手进行3次打靶射击:向固定靶射击1次,向移动靶射击2次.
(1)求“该射手射中固定靶且恰好射中移动靶1次”的概率;
(2)求该射手的总得分X的分布列和数学期望.
21.(12分)雅言传承文明,经典滋润人生,中国的经典诗文是中华民族精神文明的重要组成部分,近年来某市教育局积极推广经典诗文诵读活动,致力于营造“诵读国学经典,积淀文化底蕴”的书香校园,引导广大学生熟悉诗词歌赋,亲近中华经典,感悟中华传统文化的深厚魅力,丰厚学生的人文积淀,该市教育局为调查活动开展的效果,对全市参加过经典诗文诵读活动的学生进行了测试,并从中抽取了1000份试卷,根据这1000份试卷的成绩(单位:分,满分100分)得到如下频数分布表.
成绩/分
频数 40 90 200 400 150 80 40
(1)求这1000份试卷成绩的平均数(同一组中的数据用该组区间的中点值为代表).
(2)假设此次测试的成绩服从正态分布,其中近似为样本平均数,近似为样本方差,已知的近似值为,以样本估计总体,假设有的学生的测试成绩高于市教育局预期的平均成绩,则市教育局预期的平均成绩大约为多少(结果保留一位小数)?
(3)该市教育局准备从成绩在内的120份试卷中用分层抽样的方法抽取6份,再从这6份试卷中随机抽取3份进行进一步分析,记为抽取的3份试卷中测试成绩在内的份数,求的分布列和数学期望.
参考数据:若,则,,.

22.(12分)体检时,为了确定体检人是否患有某种疾病,需要对其血液采样进行化验,若结果呈阳性,则患有该疾病;若结果呈阴性,则未患有该疾病.对于份血液样本,有以下两种检验方式:一是逐份检验,则需检验次.二是混合检验,将份血液样本分别取样混合在一起,若检验结果为阴性,那么这份血液全为阴性,因而检验一次就够了﹔如果检验结果为阳性,为了明确这份血液究竟哪些为阳性,就需要对它们再次取样逐份检验,则份血液检验的次数共为次.已知每位体检人未患有该疾病的概率为,而且各体检人是否患该疾病相互独立.
(1)若,求位体检人的血液样本混合检验结果为阳性的概率;
(2)某定点医院现取得位体检人的血液样本,考虑以下两种检验方案:
方案一:采用混合检验;
方案二:平均分成两组,每组位体检人血液样本采用混合检验.
若检验次数的期望值越小,则方案越“优”.试问方案一、二哪个更“优”?请说明理由.
下载帮助: 发表评论 加入收藏夹 错误报告
相关文件: 无相关信息
发表评论 共有条评论
用户名: 密码:
验证码: 匿名发表
推荐下载
最后更新
热门点击